
38 The Delphi Magazine Issue 60

Beating The System:
Easy Internet, Part 1
by Dave Jewell

Ahuge assortment of client-side
Delphi components are avail-

able for internet programming.
They range from the Net Masters
controls which are bundled with
Delphi, through the excellent (and
free!) offerings such as those from
Frank Piette and the WinShoes
people, to serious commercial
products like the recently released
Internet Professional toolkit from
TurboPower (www.turbopower.
com). This last, incidentally, is
reviewed in the August issue of
Developers Review.

The majority of these compo-
nents sit on top of the WinSock
library, which implements the
standard TCP/IP protocol stack.
Version 2.0 of WinSock is primarily
implemented inside a DLL called
WS2_32.DLL. From this, you might
be forgiven for thinking that
Microsoft’s web applications such
as OutLook Express, Internet
Explorer, etc, simply sit on top of
WinSock, but in fact, this isn’t the
case. Enter WININET.DLL, which
provides a higher level of function-
ality and is extensively used by
Microsoft’s internet applications.
If you’re using Internet Explorer 4.0
or later, then you can guarantee
that the WinINet DLL is available.
Because WinINet is the workhorse
of Internet Explorer, most of the
functionality contained within the
library relates to HTTP and FTP
access (with a little Gopher func-
tionality thrown in), as we’ll see.

Despite WININET.DLL having
been around for some time now,
many programmers seem to be
unaware of it and the extent to
which it can simplify web program-
ming. In this month’s article, I’ll
take you on a tour of WinINet, with
particular emphasis on the FTP
functions, and I’ll show you a
simple program which illustrates
how to browse a server directory
using WinINet functions.

Getting Connected
Borland provide a wrapper for
WinINet with recent versions of
Delphi and C++Builder, meaning
that you only need to add WinINet
to the uses clause of your applica-
tion to get started. Once you’ve
done that, getting an application
online is no more complex than
executing the code in Listing 1.

Wasn’t that easy?! No faffing
about with RASDial, no mucking
about with phone book entries,
just one simple call and you’ve got
a connection to the internet.
InternetAutodial attempts to dial
your default internet connection
and, as you’ll gather from the code,
returns True on success, False if it
fails. If you execute InternetAuto-
dial while your PC is already
online, it detects the connection
and returns True immediately. The
first parameter to the call is a flag
which determines how the connec-
tion is made; passing Internet_
AutoDial_Force_Online forces the
computer to go online, displaying
the standard RAS dial-up dialog
(see Figure 1) and waiting for the
user to hit the Enter key. If the user
cancels the dialog, then the opera-
tion is aborted and the Internet-
Autodial returns False. The second
parameter is a window handle
which is presumably (the
Microsoft documentation is noth-
ing if not vague) used as a parent
handle for any dialog boxes which
need to be displayed; you can pass
zero here if you want.

If you want to frighten the
horses, Internet_AutoDial_Force_
Unattended can be passed as the
flag parameter. In this case, the
RAS dial-up dialog is still displayed
while your modem is dialling and
the connection is being authenti-
cated, but it no longer waits for a
keypress before starting. In other
words, this flag allows you to write
programs which ride roughshod
over the current setting of the Con-
nect automatically checkbox in
the RAS dial-up dialog, connecting
whenever they want without the
user’s permission or intervention.
Thanks to British Telecom, most of
us are still using dial-up modems
and paying for connect time, which
means that users of such a badly-
behaved program will hastily
remove it from their hard disk.
That said, there are obviously
applications (such as email check-
ers) which have a bona fide reason
for unattended internet access.

Hanging up is just as easy, as you
can see from the sample code in
Listing 2. If successful, the Inter-
netAutodialHangup routine returns
True. The only parameter to this
function is reserved, and should
always be zero.

Dead easy, so far, right? Well,
yes and no. There is one big caveat
you’ve got to watch for and this
concerns the business of sharing a
dial-up connection with other
applications. In previous versions
of Internet Explorer it was possible
to dial out using the web browser,
start surfing a site and then Alt-Tab
over to Outlook Express to read
your mail. The problem here was
that if Outlook Express was config-
ured to drop the line after doing an
email send/receive, then drop the
line is exactly what it would do,
regardless of whether or not it was
the application that had dialled

procedure TForm1.FormCreate(Sender: TObject);
begin
if InternetAutodial(Internet_AutoDial_Force_Online, Handle) then
ShowMessage ('We''re connected!');

end;

procedure TForm1.DisconnectClick(Sender: TObject);
begin
if InternetAutodialHangup (0) then
ShowMessage ('Disconnected');

end;

➤ Above: Listing 1 ➤ Below: Listing 2

August 2000 The Delphi Magazine 39

out in the first place! This problem
has been fixed in Internet Explorer
5.0, but unfortunately the fixed
functionality doesn’t seem to work
for non-Microsoft WinINet clients.

The bottom line? Create a simple
do-nothing Delphi application
using Listings 1 and 2, and then fire
up two instances of the program, A
and B. The first instance, A, will ini-
tiate a dial-up connection to the
Internet while B will simply use this
existing connection. Even though B
didn’t create the connection, clos-
ing B will drop the line which really
isn’t what we want. Why didn’t
Microsoft implement some sort of
reference-counting facility inside
the WinINet code so that the last
application to call InternetAuto-
dialHangup is the one that physi-
cally drops the line? Oh well.

Be that as it may, there are a
handful of other WinINet routines
that relate to dialling and establish-
ing a connection. One of these is
the InternetCheckConnection call
which looks like this:

function
InternetCheckConnection(
lpszUrl: PChar;
dwFlags: DWORD;
dwReserved: DWORD): BOOL;
stdcall;

This routine checks to see if a spe-
cific connection to the internet can

be established. The first parameter
can either specify a URL or be Nil. If
it’s not Nil, the WinINet code
extracts the host server name from
the URL and attempts to ‘ping’ the
server to check for connectivity.
There are a number of other varia-
tions on this theme including
InternetGoOnline, InternetGetCon-
nectState and others, but let’s get
on to some of the more interesting,
higher level functionality. Inci-
dentally, many of the higher level
routines that we’re going to be
looking at will automatically initi-
ate a connection for you when
required to do so, so in many cases
no explicit call to InternetAutodial
(or whatever) is actually required.

Starting A Session
The most important single routine
in the WinINet library is Internet-
Open. This routine has to be called
before most of the other HTTP or
FTP related routines are called.
The Delphi prototype of Internet-
Open looks like this:

function InternetOpen(
lpszAgent: PChar;
dwAccessType: DWORD;
lpszProxy, lpszProxyBypass:
PChar; dwFlags: DWORD):
HINTERNET; stdcall;

The first parameter corresponds
to the ‘agent’ name that’s used by
the HTTP protocol. You’ll typically
want to set it to some unique name
for your application. The access
type parameter relates to the way
in which host names are resolved
and whether or not a proxy is
involved. The simplest option here
is simply to set it to the value zero
(corresponding to Internet_Open_
Type_PreConfig) which simply tells
WinINet to retrieve all necessary
information from the registry.

The lpszProxy parameter is a
pointer to the name of a proxy
server. Again, if this isn’t relevant
to your application, you can set it
to Nil. The lpszProxyBypass param-
eter points to an optional list of
host names which you don’t want
to route through the proxy and, as
before, can be set to Nil in most
cases. Finally, the dwFlags parame-
ter allows you to set a number of

specific options. For example, by
passing Internet_Flag_Async as a
flag, you ensure that this session
(ie all the internet operations that
‘descend’ from this call to Inter-
netOpen) are non-blocking asyn-
chronous operations. Obviously, if
you go down this route more work
is required in the structure of your
code so as to know when a particu-
lar pending operation has com-
pleted. Another possible flag
setting is Internet_Flag_From_
Cache. This directs that all opera-
tions are to be performed relative
to the local cache, which is main-
tained by Internet Explorer, with-
out actually going online. If a
requested item isn’t present in the
cache, then an error is returned.

The result of the function is what
one might call a ‘session handle’.
For some odd reason, (this is prob-
ably because Borland simply
copied the original Microsoft type
declarations) the HINTERNET type is
defined in terms of a pointer rather
than a THandle. This means that
when testing a session handle for
failure, we have to compare it with
Nil instead of zero. The same
observation applies to the various
other ‘handles’ in the WinINet API.

OK, we’ve got a session handle,
so what can we do with it? Let’s
suppose we’re trying to start an
FTP session. Most of the Microsoft
articles describing WinINet ser-
vices have used the example of a
connection to ftp.microsoft.com,
so I’ll do the same. The code in
Listing 3 shows how to open a
connection to this server.

As you can see, the code checks
that it’s got a valid session handle
and, if so, calls another routine
called InternetConnect. If you have
not called one of the routines I
mentioned earlier to establish a
network connection, then the com-
puter will attempt to dial out at the
time InternetConnect is called.
This routine is specifically
designed to set up an FTP or HTTP
connection with a designated
server (remember that HTTP and
FTP functionality is what WinINet
is all about). Briefly, the first
parameter is the session handle
that we got earlier from Internet-
Open. The second parameter is the

➤ Figure 1: The RAS dial-up
dialog can be bypassed
by WinINet clients performing
unattended operations such
as reading email.

40 The Delphi Magazine Issue 60

name of the server that we want to
talk to. This can optionally be a
straight IP address such as
11.22.33.44. Next comes the port
number: this is the port on which
the server is listening for connec-
tion requests. For FTP servers, this
is usually 21 and for HTTP servers
it’s 80. Secure HTTP servers use a
port number of 443. In this case, we
specify a value of Internet_Def-
ault_FTP_Portwhich equates to 21.

The port number is then fol-
lowed by username and password
strings. For anonymous FTP
access, you can set both of these
strings to Nil. If we’re requesting
access to an FTP server, then a Nil
username string will be converted
by the WinINet code to ‘anony-
mous’ and a Nil password will be
converted to your email address.
The next parameter specifies the
type of service we want. Obviously,
Internet_Service_FTP indicates we
want to use the FTP service. The
penultimate parameter specifies
the flags to use. As far as I can tell,
only one optional flag is defined,
Internet_Flag_Passive, which
specifies a passive type of FTP con-
nection. The final parameter is
basically an application-defined
context number which can typi-
cally be used to recover the appli-
cation ‘context’ inside one of the
call-back routines defined by the
WinINet API. In an OOP based pro-
gramming language such as Delphi,
you’d typically pass Self for this
parameter. As with InternetOpen,
InternetConnect returns a handle
of type HINTERNET.

Fun With FTP
We’re now all set to explore the
FTP-related goodies made avail-
able by WinINet. Once we’ve con-
nected to our FTP server of choice,
it would be nice to find out what
directory we are located in. This is
accomplished through a call to
FtpGetCurrentDirectory, which
looks like this:

function FtpGetCurrentDirectory
(hConnect: HINTERNET;
lpszCurrentDirectory: PChar;
var lpdwCurrentDirectory:
DWORD): BOOL;
stdcall;

As with the other WinINet routines,
True is returned on success and
False on failure. The first parame-
ter is the connection handle we got
from the call to InternetConnect.
The second parameter points to a
buffer where the current directory
name will be placed whereas
lpdwCurrentDirectory specifies the
size of this buffer on input, and the
number of characters copied to the
buffer on exit, easy. In the case of
ftp.microsoft.com you’ll find that
the initial directory is set to /,
which of course is Unix-speak for
the root directory. Remember that
FTP servers are typically UNIX or
Linux beasts and backslashes will
be conspicuous by their absence!

If you want to get to a different
directory, you can use the FtpSet-
CurrentDirectory routine which
works exactly as advertised. Once
again, it returns True on success
and takes the connection handle
mentioned above. The second
parameter is a pointer to the
required directory. This can be a
fully qualified name starting from
the root directory, or a path rela-
tive to the current directory:

function
FtpSetCurrentDirectory(
hConnect: HINTERNET;
lpszDirectory: PChar): BOOL;
stdcall;

Of course, navigating directories
isn’t much use if we don’t know
what files and directories are out
there. Enter the FtpFindFirstFile
and InternetFindNextFile rou-
tines. These, naturally, are analo-
gous to the standard FindFirst and
FindNext routines we all know and
love, the big difference being that
they’re enumerating files on a
server that may be half way around
the world. Needless to say, they’re
also a lot slower! Here’s what

the FtpFindFirstFile routine looks
like:

function FtpFindFirstFile
(hConnect: HINTERNET;
lpszSearchFile: PChar;
var lpFindFileData:
TWin32FindData;
dwFlags: DWORD; dwContext:
DWORD): HINTERNET; stdcall;

As you’d expect by now, hConnect
is the familiar connection handle
whereas lpszSearchFile is the file
that we’re looking for. If you want
to include every file in your search
(ie simply enumerate the contents
of the current directory) then you
can set this parameter to *.*. The
lpFindFileData parameter points
to a standard TWin32FindData
record as used by the Windows
API routines FindFirstFile and
FindNextFile.

There are some significant cave-
ats here: bet you thought it was
getting too easy, right? To begin
with, you shouldn’t rely upon
fields such as file creation date/
time in the TWin32FindData record.
We’re probably talking to a UNIX
box and Microsoft’s WinINet docu-
mentation specifically states that
this sort of information might not
be available, in which case the
WinINet code simply fills in its
‘best guess’ of what these fields
should be. Thus, creation date and
last access date will very often be
the same as the modification date.

A more severe restriction
applies to the use of FtpFind-
FirstFile itself. Amazingly, you’re
only allowed to use this routine
once within the context of a single
FTP connection handle. To put this
another way, once you’ve called
InternetConnect you’re allowed
one use of FtpFindFirstFile. If you

➤ Listing 3

procedure TForm1.FormShow(Sender:TObject);
begin
hSession := InternetOpen('DelphiMagWinINetDemo',
Internet_Open_Type_PreConfig, Nil, Nil, 0);

if hSession <> Nil then begin
hService := InternetConnect (hSession, 'ftp.microsoft.com',
Internet_Default_FTP_Port, Nil, Nil, Internet_Service_FTP, 0, 0);
if hService <> Nil then
ShowMessage ('Connected to ftp.microsoft.com')

else
ShowMessage ('Can''t connect to ftp.microsoft.com');

// more code here.....
end;

end;

42 The Delphi Magazine Issue 60

want to, for example, write a tree-
walking directory enumerator
(possibly not a good idea with a
slow FTP server!) then every time
you move to a new directory you’ll
need to close the current connec-
tion handle and then open another
one with InternetConnect. And yes,
I think this is pretty daft too.

Continuing with the description
of FtpFindFirstFile, the next
parameter is a flag which, amongst
other things, controls whether
WinINet should look in the cache
or ignore the cache and go straight
to the server. The last parameter is
another application-specified con-
text number, as we saw in the final
parameter to InternetConnect. The
return value from FtpFindFirstFile
is either another non-zero
HINTERNET handle or zero. If zero is
returned, then you can use the
standard API GetLastError routine
to determine what specific error
occurred. When enumerating an
empty directory, FtpFindFirstFile
will return zero and GetLastError
will return Error_No_More_Files.

If successful, the handle
returned from FtpFindFirstFile
can be used for subsequent calls to
InternetFindNextFile. This routine
is much simpler, taking only the
handle and a pointer to the
TWin32FindData record:

function InternetFindNextFile(
hFind: HINTERNET;
lpvFindData: Pointer): BOOL;
stdcall;

I know what you’re thinking; why
did some dummy define the
second parameter as an anony-
mous pointer instead of another
var TWin32FindData parameter?
Well, there is a little method to the
madness, but not much. As you
may have inferred from the name,
InternetFindNextFile isn’t used
merely by FTP sessions, but by
Gopher sessions too. Hence,
depending on whether the first
parameter was returned from Ftp-
FindFirstFile or GopherFindFirst-
File, the second parameter will
point to either a TWin32FindData
record or a GOPHER_FIND_DATA
record. A crazy way to define an
API? Regular readers of this

column will know that further com-
ment on Microsoft’s API-writing
skills is entirely superfluous.

Trouble?
As I’ve already pointed out, talking
to any sort of server over a dial-up
connection, HTTP, FTP or what-
ever, can be a tediously slow pro-
cess. Many other factors come in
here, such as how busy the server
is, network loading and so forth. If
you’re seriously interested in writ-
ing robust web applications then
you’ll want to ‘stress-test’ your
programs under conditions which
simulate heavy network loading.
One way I’ve found to do this is to
fire up Outlook Express, subscribe
to one of the many ‘binaries’
newsgroups and download multi-
megabytes of assorted binary files
in the background while testing
your application in the foreground.
If your program survives such
cruelty without timing out, throw-
ing an un-trapped exception or
whatever, it’ll probably survive in
the real world.

In a similar vein, end-users aren’t
going to be too impressed with an
FTP explorer-style program which
spends five minutes enumerating
the files on the remote server
before displaying any sign of activ-
ity to the user (yes, yes, I know that
Internet Explorer does exactly
that, but surely we can aspire to
something better?). The keyword
here is feedback, it’s important to
let the end-user know that your
program isn’t out to lunch but that
something is still happening. To
support this, the WinINet library
has the concept of the callback
routine: an application-supplied
function called whenever some-
thing has happened. When using
WinINet synchronously, callback
routines are optional, but they are
obviously mandatory when using
WinINet asynchronously, because
there’s no other mechanism for
checking on the progress of a
particular request.

Because Delphi makes it easy to
create threaded applications, my
own inclination would be to stick
with synchronous (blocking)
WinINet calls, offloading the bulk
of the WinINet processing onto a

background thread which uses
callback routines to gather
progress information and commu-
nicate with the primary thread via
the TThread.Synchronize method.

So how does the callback
mechanism work? WinINet
provides a routine called Internet-
SetStatusCallback:

function
InternetSetStatusCallback(
hInet: HINTERNET;
lpfnInternetCallback:
PFNInternetStatusCallback):
PFNInternetStatusCallback;
stdcall;

The first parameter is our old
friend the HINTERNET handle. A nice
feature of the WinINet API is that
any callback function, once
applied to a specific handle, will
also automatically apply to any
derived handles. Thus, you can
theoretically (see the later caveat)
create a session handle with
InternetOpen, set up a callback
function on that handle, and any
derived FTP, HTTP or Gopher han-
dles will automatically ‘inherit’ the
callback that you’ve set up.

The second parameter is a
pointer to our callback routine,
which looks like this:

procedure MyWinINetCallBack(
hHandle: HINTERNET;
dwContext: DWord;
dwStatus: DWord;
pStatus: Pointer;
dwLen: DWord); stdcall;

As ever, API-level callbacks must
be declared using the stdcall
attribute otherwise access viola-
tions will inevitably result. The
first parameter is the handle which
‘raised’ the callback event. It might
be the handle that was originally
passed to InternetSetStatusCall-
back, or it might be a derived
handle. The dwStatus parameter
provides a large number of possi-
ble status codes which it would be
too tedious to list here. The mean-
ing of the pStatus parameter
depends on the status code in
question and dwLen specifies how
much data is addressed via
pStatus. I’m sorry if that seems a

August 2000 The Delphi Magazine 43

bit vague, but if you’ve got access
to the Platform SDK, then take a
look at the documentation for
yourself and you’ll see what I
mean. Fortunately, there is a sim-
pler way to recover human read-
able status information at the time
a callback is triggered, as we’ll see
later. Finally, the function result
returned from InternetSetStatus-
Callback is the address of any pre-
viously existing callback function.

Here’s that caveat I mentioned.
I said ‘theoretically’ earlier
because there’s one interesting
subtlety which requires some cau-
tion. As I’ve already mentioned, it’s
tempting to use the dwContext
parameter (used with many
WinINet functions) to pass Self so
that you can recover the context of
a Delphi object within the callback
routine. However, you’ll notice
that the InternetOpen routine itself
doesn’t take a context number, and
it’s therefore impossible to associ-
ate a TObject instance with a
callback routine at the session
level. This raises the question of
exactly what context number gets
passed when a session-level notifi-
cation takes place? In my own
experiments, I was unable to
persuade a session-level event to
trigger a callback, so I decided that
the best option was to play safe
and set up the callback at the
connection handle level, ie FTP,
HTTP or whatever.

Putting It All Together
In Figure 2 you can see what the
ftp.microsoft.com site looks like as
seen from Internet Explorer. Figure
3 shows the same information
viewed from my little FTP browser
demo, the source code of which

can be seen in Listing
4. This is a ‘belt and
braces’ implementa-
tion, which does not
use threading, but it

does illustrate how to put together
the various WinINet calls that I’ve
discussed so far.

If you double click a directory
name, the program will go into that
directory and redisplay the files
contained therein. To ‘back out’ to
the previous directory level, just
click the succinctly named Up
button. The current directory
name is displayed in the top left
corner of the window and any
status messages received via
callback routines are displayed in
the bottom pane.

As you’ll see from the code, the
action starts in the GetFileList-
ButtonClick routine which calls
InternetOpen to create a new ses-
sion handle. The parameters used
here represent just about the sim-
plest way of calling the routine. If a
valid handle is returned, then the
GetFileList method is called to
retrieve the current directory list-
ing from the server. A finally
clause ensures that the session
handle is closed after the directory
listing has been retrieved.

The GetFileList routine is
considerably more complicated.
Firstly, it sets the cursor to an
hourglass before opening an FTP
connection to Microsoft’s
server. It is at this point that
the computer dials out, if
an internet connection
does not already exist.
Notice how the Self param-
eter is passed as the final

parameter to InternetConnect after
casting it to a Cardinal. If this call
succeeds, then a callback function,
MyCallback, is set up and the status
pane caption is altered to reflect
the fact that a connection has been
established.

The program keeps track of the
current directory location on the
FTP server and this is set using the
FtpSetCurrentDirectory call. The
current path is also retrieved at
this point before the code goes
into the main enumeration loop.
This is preceded by a call to
FtpFindFirstFile which retrieves
the initial ‘find handle’ and initial-
ises the TWin32FindData with infor-
mation pertaining to the first file
entry. You’ll notice that each time
round the loop, the GetLastError
routine is called to see if we’ve
reached the end of the enumera-
tion. Each retrieved file or direc-
tory name is added to the listview
control and the SubItems property
of the associated item is initialised
to reflect whether we’re dealing
with a directory or a file. If the
latter, then the file size is
retrieved. (Yes, yes, I know I’ve
only bothered with the low 32-bits
of the file size, but how many 4Gb
files have you downloaded
recently? Then again, this is the
Microsoft FTP site, so you may be
right. J)

There’s one very important point
which I should make about the call-
back routine, MyCallBack. As you
can see, the second parameter cor-
responds to the Delphi object
instance which we passed in ear-
lier. This completely contradicts
Microsoft’s documentation which
states that you get a pointer to the
application supplied value, you

➤ Figure 2: Internet
Explorer contains
built-in FTP
browsing facilities
courtesy of the
WinINet library it
sits on top of.

➤ Figure 3: Source to
this FTP browser is
in Listing 4: it shows
the rudiments of
working with the
WinINet library.

44 The Delphi Magazine Issue 60

don’t! My first crack at a callback
routine kept keeling over with an
access violation because I was
using var to access the Self param-
eter. Once I realised that the
Microsoft documentation was in
error, I removed the var keyword
and everything started working.
And yes, Cathy, this is yet another
reason why this month’s copy was
late. Eleventh Hour Productions
strikes again!

Once a callback notification has
been received, the routine calls
InternetGetLastResponseInfo to
retrieve a response string from the
WinINet library. For sure, you may
well get more detailed information
by examining each and every
possible status word as per the
Microsoft documentation, but I
needed a quick way of seeing what
sort of responses were being
received. As you can see from
Figure 3, when working with an
FTP connection, the callback

mechanism can be used to get
standard FTP response strings
from the server.

The rest of the code is pretty
trivial. The FileListDblClick rou-
tine checks to see if a directory has
been double clicked and, if so,
forms a new directory path, before
calling the GetFileListButtonClick
routine to display the new direc-
tory contents. Similarly, the
UpButtonClick routine is used to
return to the parent directory
level. The FileListCompare code is

unit MainForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ComCtrls, WinINet,
ExtCtrls;

type
TForm1 = class(TForm)
FileList: TListView;
GetFileListButton: TButton;
CurrentDir: TLabel;
Panel1: TPanel;
Status: TLabel;
UpButton: TButton;
procedure GetFileListButtonClick(Sender: TObject);
procedure FileListDblClick(Sender: TObject);
procedure UpButtonClick(Sender: TObject);
procedure FileListCompare(Sender: TObject; Item1, Item2:
TListItem; Data: Integer; var Compare: Integer);

private
hSession: HInternet;
hFTP: HInternet;
hFind: HInternet;
ThisDir: String;
procedure GetFileList (const Dir: String);

public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
procedure MyCallBack (hHandle: HINTERNET; Self: TForm1;
dwStatus: DWord; pStatus: Pointer; dwLen: DWord); stdcall;

var
ErrNum, BuffSize: DWord;
szBuff: array [0..1024] of Char;

begin
BuffSize := sizeof (szBuff);
if InternetGetLastResponseInfo(ErrNum, szBuff,
BuffSize) then
if (BuffSize > 0) and (szBuff [0] <> #0) then
Self.Status.Caption := szBuff;

end;
procedure TForm1.GetFileList (const Dir: String);
var
Item: TListItem;
szDirSize: Cardinal;
FileData: TWin32FindData;
szDirectory: array [0..512] of Char;

begin
Screen.Cursor := crHourGlass;
try
hFTP := InternetConnect (hSession, 'ftp.microsoft.com',
Internet_Default_FTP_Port, Nil, Nil,
Internet_Service_FTP, 0, Cardinal (Self));

if hFTP <> Nil then try
InternetSetStatusCallback (hFTP, @MyCallback);
Status.Caption := 'Connected to ftp.microsoft.com';
if Dir <> '' then
FtpSetCurrentDirectory(hFTP, PChar(Dir));

// Get current directory
szDirSize := sizeof (szDirectory);
if FtpGetCurrentDirectory(hFTP, szDirectory,
szDirSize) then begin
ThisDir := szDirectory;
CurrentDir.Caption :=
'Current Directory = ' + szDirectory;

end;
// The main enumeration loop
FileList.Items.Clear;
hFind := FtpFindFirstFile(hFTP, '*.*', FileData,
0, Cardinal(Self));

if hFind <> Nil then try
while True do begin
if GetLastError = Error_No_More_Files then break;
// We've got a file

Item := FileList.Items.Add;
Item.Caption := FileData.cFileName;
// Is this a directory or a file?
if FileData.dwFileAttributes =
File_Attribute_Directory then begin
Item.Data := Pointer (1);
Item.SubItems.Add ('--dir--');

end else begin
Item.Data := Nil;
Item.SubItems.Add(IntToStr(
FileData.nFileSizeLow));

end;
if not InternetFindNextFile(hFind, @FileData)
then break;

end;
finally
InternetCloseHandle (hFind);

end;
finally
InternetCloseHandle (hFTP);

end;
finally
Screen.Cursor := crDefault;

end;
end;
procedure TForm1.GetFileListButtonClick (Sender: TObject);
begin
hSession := InternetOpen('DelphiMagWinINetDemo',
Internet_Open_Type_PreConfig, Nil, Nil, 0);

if hSession <> Nil then try
GetFileList (ThisDir);

finally
InternetCloseHandle (hSession);

end;
end;
procedure TForm1.FileListDblClick(Sender: TObject);
var
Item: TListItem;
NewDir: String;

begin
// Is this a directory double-click?
Item := FileList.Selected;
if (Item <> Nil) and (Item.Data <> Nil) then begin
NewDir := ThisDir;
if NewDir = '' then NewDir := '/';
if NewDir [Length (NewDir)] <> '/' then
NewDir := NewDir + '/';

ThisDir := NewDir + Item.Caption;
GetFileListButtonClick(Sender);

end;
end;
procedure TForm1.UpButtonClick(Sender: TObject);
var
p: PChar;
NewDir: array [0..512] of Char;

begin
if (ThisDir <> '') and (ThisDir <> '/') then begin
StrPCopy (NewDir, ThisDir);
p := StrRScan (NewDir, '/');
if p <> Nil then begin
p^ := #0;
ThisDir := NewDir;
if ThisDir = '' then ThisDir := '/';
GetFileListButtonClick (Sender);

end;
end;

end;
procedure TForm1.FileListCompare(Sender: TObject; Item1,
Item2: TListItem; Data: Integer; var Compare: Integer);

begin
Compare :=
Ord(Ord(Item1.Data <> Nil) < Ord(Item2.Data <> Nil));

end;
end.

➤ Listing 4

August 2000 The Delphi Magazine 45

used by the listview control to ensure that all directo-
ries are listed before files. If you compare Figures 2 and
3, you’ll see that the display order is identical.

Conclusions
And that’s about it for this month. Next time round,
we’ll look at what other FTP functionality is available
and wrap things up into a reusable component that’s
capable of downloading (and maybe even uploading)
files from an FTP server using a separate background
thread. If space and time allow, we’ll also take a look at
the HTTP-related calls that are available.

Dave Jewell is a freelance consultant/programmer
and technical journalist specialising in system-level
Windows and DOS work. He is the Technical Editor of
Developers Review which is also published by iTec.
You can contact Dave as TechEditor@itecuk.com

	Getting Connected
	Starting A Session
	Fun With FTP
	Trouble?
	Putting It All Together
	Conclusions

